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A model for mode I fracture in brittle materials is used to elucidate the relationship between characteristics
of the fracture process, such as crack roughness, fractal dimension, and fragment size distributions. It is shown
that different roughness in local regions of the crack path leads to different mechanisms for the subsequent
fracture of those regions. Formation of two robust power laws for the distribution of formed fragments is
observed, governing the size distribution of smaller and larger fragments. We connect measurements in frag-
ment size distribution with the local roughness of cracks in the region of fragment formation.
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I. INTRODUCTION

Fracture and fragmentation are ubiquitous processes in
materials and understanding these events is not only of fun-
damental interest, but also is vitally important for a broad
range of technological applications. Recent findings suggest
that both fracture and fragmentation can be characterized in
terms of a few, relatively simple scaling laws �1–7�. Devel-
oping a fundamental understanding of the physical underpin-
nings of these scaling laws, however, represents a significant
theoretical challenge. The latter problem is quite difficult be-
cause fracture involves complex dynamical behavior that en-
compasses many different time and length scales. Addition-
ally, the manner in which the experiments are carried out
makes certain aspects of crack behavior more or less difficult
to measure. Consequently, theoretical research in this area
tends to be focused mainly on aspects of fracture having to
do with the specific way fracture is initiated in experiments.
For example, we now have a relatively well-established un-
derstanding about the universality of the crack surface
roughness exponent in mode I fracture, both in two- and
three-dimensions �1–4�, and the power law distribution for
fragment sizes in fracture by impact �5–7�. Much less, how-
ever, is known about the relationship between scaling laws in
these two types of fracture, or about the roughness of frag-
ments produced via impact fracture. Different explanations
for these respective power laws were proposed, but a full
theoretical understanding of fracture dynamics is far from
complete. Additionally, while the multifractal character of
fracture is generally accepted �8�, it is not well-established
which features of crack growth can be explicitly character-
ized in terms of fractal analysis �9�.

In this paper, we focus on mode I fracture �where the
tensile stress is normal to the line of the crack� in brittle
materials through use of a simple model, which nonetheless
produces rich behavior in terms of multifractal crack, pat-
terns, fragment formation, the coexistence of smooth and
rough cracks, and different types of structural evolution for
regions with predominantly rough and smooth cracks. By
utilizing such simple models that nevertheless generate suf-
ficiently rich behavior, one can connect different aspects of

fracture, such as crack roughness and fragment formation,
and thereby produce a more unified description of the events.

The paper is organized as follows. We develop a model of
fracture, discuss the fracture criterion, and describe the simu-
lations in Sec. II. In Sec. III, we consider cracks in strips of
two different materials and analyze the coexistence of re-
gions of both smooth and rough cracks that appear in these
materials. We also predict the different ways these distinct
regions will continue to evolve with further fracture. We then
numerically analyze the crack evolution and arrive at two
different power laws for the fragment size distribution. We
propose an explanation for the origin of the differences in the
values of the power exponents. We also provide some dis-
cussion of possible influences of experimental measurements
that are not described by our model, and arrive at our con-
clusions in Sec. IV.

II. MODEL DESCRIPTION

In this section, we describe the general framework of our
model of crack propagation in thin brittle plates undergoing
mode I fracture. The model is based on a theory of linear
elasticity and incorporates the maximum eigenvalue of a
strain tensor as a fracture criterion for crack growth. To con-
struct the model, we consider deformations that �1� occur in
the plane of a finite two-dimensional plate and �2� do not
result in any bending of the plate. Below, we outline a
method for discretizing this model in the special case of thin
plates.

The evolution of the displacement field u��r� , t� in a homo-
geneous material is governed by the following equation �10�:

u�̈�r,t� = c�
2 �2u��r�,t� + �c�

2 − c�
2 ��� ��� · u��r�,t�� , �1�

where c� and c� are the respective transverse and longitudi-
nal speeds of sound. The latter quantities are material param-
eters related to the Young’s modulus E and Poisson’s ratio �.
If the plate is sufficiently thin, the deformation can be re-
garded as being uniform over the thickness of the material.
The strain tensor is then solely a function of x and y �with the
plate being oriented in the xy plane�. The boundary condi-
tions for components of the stress tensor at both surfaces of
the plate are then �xz=�yz=�zz=0. Consequently, the non-
zero components of the stress tensor in terms of the strain
tensor are*Corresponding author. Electronic address: arteml@yahoo.com
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�xx =
E

1 − �2 �uxx + �uyy� ,

�yy =
E

1 − �2 �uyy + �uxx� , �2�

�xy =
E

1 + �
uxy .

Here, the strain tensor is given by uij =
1
2
� �ui

�xj
+

�uj

�xi
�. For the

special case of small plate thickness h, the following trans-
formation allows us to consider Eq. �1� to be a two-
dimensional vector form, with all the vector operators being
two-dimensional:

c�
2 =

Eh

2��1 + ��
,

�3�

c�
2 =

Eh

��1 − �2�
,

where � is the surface density of a material, defined as mass
per unit area.

It can be shown that a two-dimensional lattice model with
a bond bending term, as developed in Ref. �11�, recovers the
dynamical equations of motion, Eq. �1�, up to second order
in the lattice spacing. The following Hamiltonian defines this
lattice model �11�:

H = �
i

pi
2

2m
+

1

2�
ij

k1��u� i − u� j�x̂ij�2 +
1

2�
ij

k2��u� i − u� j�x̂ij�2

+
c

2�
ijl

�cos �ij,il − cos 45°�2, �4�

where x̂ij is the unit vector. In Eq. �4� pi is a momentum and
m is a mass associated with a node.

We construct a lattice model that is described by Eq. �4�.
In particular, the interactions between the nodes on the lattice
are characterized by three force constants: nearest- and next-
nearest-neighbor central interactions with constants k1 and
k2, respectively, and a next-nearest neighbor bond-bending
interaction with constant c �see Fig. 1�a��. Central interac-
tions control bond stretching and noncentral interactions
govern the displacement of each of the eight angles � made
by the adjacent nearest neighbor, central node, and next-
nearest neighbor �see Fig. 1�a��. The relationship between the
force constants and material parameters are given by

E = 8k�k + c/a2�/�3k + c/a2� ,
�5�

� = �k − c/a2�/�3k + c/a2� .

By setting k=k1=k2 /2, we recover the isotropic properties of
the medium �11�. The noncentral, bond bending term is re-
quired if one wants to account for varying material proper-
ties. Setting c=0 fixes the Poisson’s ratio at �=1/3.

Formulation of a problem as in Eq. �4� allows us to carry
out numerical simulations of the dynamic behavior of the
system by means of molecular dynamic algorithms. The

main advantage of formulating a dynamic model in this man-
ner, rather than using Eq. �1�, is that it allows us to avoid
numerical stability problems pertinent to Eq. �1�.

A. Fracture criterion

The criterion for the propagation of fracture is a crucial
component of the continuum simulation of the fracture dy-
namics. The physical representation of a material breaking is
usually implemented through the commonly used most
stretched bond rule �see, e.g., �9� and references therein�. In
this paper, we implement a fracture criterion not on the
bonds between nodes, but on the nodes themselves. In par-
ticular, we use the maximum eigenvalue of the strain tensor
at a node as the criterion of fracture �12�. If the maximum
eigenvalue of the strain tensor at a node exceeds the thresh-
old value �*, the node no longer interacts with its neighbors
and a crack is considered to be propagating through that
node, as shown in Fig. 1�b�.

Since cracks propagate through the nodes, one always has
all the components of the strain tensor measured at the place
where the crack would go, before making the decision to
advance the crack. If a fracture criterion were to be imple-
mented on the bonds, only one component of the strain ten-
sor could be measured directly. The other components would
have to be interpolated from information collected from the
vicinity of a bond or averaged from a group of bonds.

This current formulation of the fracture criterion makes it
possible to preserve symmetry with respect to a crack line, in
straight propagating cracks. This allows us to partition the
fracture modes and focus on mode-I fracture. Elimination of
mode-II perturbations significantly reduces lattice-trapping
effects. In this manner, the shape and dynamics of the tensor
fields obtained from the simulations can be analyzed effi-
ciently.

B. Simulation procedure

We study mode I fracture in two-dimensional plates by
carrying out conventional molecular dynamic simulations of

k1

k2

k1k2

ji

l

θ
ij,il

(a) (b)

FIG. 1. �a� The central node interacts by means of a central
force with four nearest and four next-nearest neighbors connected
by springs with spring constants k1 and k2, respectively, and a non-
central force, depending on eight angles � �only one shown�,
formed by nearest, central, and next-nearest neighbors. �b� The
crack �void at the bottom� propagates through the nodes. After the
shaded node is removed, the crack will advance one step in the
upward direction.
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the nodes’ equations of motion, as obtained from Eq. �4�. The
following procedure is used to initiate the simulations. A
fixed strain of 1% is applied to the vertical sides of a plate,
i.e., the nodes at x=0 and x=Nxa, where Nx is the node
number and a is the lattice spacing. The crack is initiated at
the midpoint of the top plate �at x=aNx /2� by breaking a set
of nodes to produce a vertical “cut.” After this cut is made,
the simulations are carried out until the system reaches equi-
librium. At this stage, the simulations are performed with a

dissipative force �F�−x�̇�, which is added to the model given
by Eq. �4�. The plate’s utmost left and utmost right nodes,
with coordinates x=0 and x=Nxa, are allowed to move in the
vertical direction to eliminate strain concentrations at the
corners of a plate. After all nodes are effectively at rest, we
record the value of the maximum eigenvalue of the strain
tensor �* of the most overloaded node and use this value as
a critical value in further simulations. Our typical value is
�*=2.5%. The dissipative forces are turned off after this ini-
tial stage. The simulations are then carried out from the equi-
librium configuration obtained from the first stage, with
nodes at x=0 and x=Nxa being allowed to move in the ver-
tical direction while being kept at fixed horizontal displace-
ment.

Our model describes crack growth as a fully deterministic
process. Keeping the symmetry of the crack with respect to
the x=aNx /2 line serves two purposes: it allows us to ex-
clude mode II perturbations and facilitates the observation of
the crack evolution, which otherwise would require addi-
tional statistical analysis.

III. RESULTS AND DISCUSSION

A. Origin and nature of the fragmentation process

The crack morphology is usually analyzed in terms of one
of the following: the fractal dimension, surface roughening,
or fragment size distributions. We begin our analysis of these
descriptions of the crack morphology for mode I fracture in
two dimensions by discussing cracks in long strips of mate-
rial, as shown in Fig. 2.

Here, we highlight the connection between temporal
trends in the crack growth �fragmentation of plates after pri-
mary crack development� and the much less considered, al-
ternating spatially localized patterns �roughness of primary
crack�. We consider cracks in two materials, one with a Pois-
son’s ratio of �=1/3 �where c=0�, as shown in Fig. 2�a�, and
another with �=1/5 �where c=0.2�, as shown in Fig. 2�b�.

The cracks propagate from top to bottom and the patterns
are given for the time it takes the dominant cracks to reach
the bottom of the plates. For completeness, we note here that
the y-component of the crack velocity remains constant. The
cracks start as a straight line, undergo a branching bifurca-
tion, develop two or more branches, and sometimes create
closed loops �i.e., fragments�. In Fig. 2, the fractal dimension
of both samples is close to 1.30, though some local regions
in Fig. 2 contain parts with both higher and lower values.
Parts of the strip with rough crack surfaces �R1 in Fig. 2�
alternate with parts of the strip with much smoother cracks
�R2 in Fig. 2�. This point can also be seen in Fig. 3, where we

plot the fractal dimension of the crack along the y direction.
The origin of the local character of the crack roughness in

Fig. 2 lies in a crack branching instability. Unlike the first
branching bifurcation at y=90, where two branches were re-
lated by symmetry with respect to the vertical line �x=100�
perpendicular to the applied strain, the subsequent branching
bifurcation is affected asymmetrically by the applied defor-
mation. The branches that are oriented more along the verti-
cal direction are favored by the flow �i.e., redistribution� of
elastic energy and branches oriented more perpendicular to
this direction become abandoned. As the two main branches
become sufficiently separated, their behavior starts to re-
semble that of the initial crack on top of Fig. 2; the main
difference is that the flow of elastic energy toward each
branch is limited by the number of neighboring branches.

It is possible to choose the width of a strip to be exactly
the size to support only two branches, which would orient
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FIG. 2. Cracks in a strip of material with Poisson’s ratio
�=1/3 �a� and �=1/5 �b�. Patterns are given in the background of
a strain field; the darker the color, the higher the value of strain
field. Alternating regions R1 and R2 occupied by cracks with higher
�more than 1.30� and lower fractal dimensions, see Fig. 3. The
shattering process �almost black spots, like the one at y=200 in �a��
is more pronounced in the region of higher fractal dimension. The
fragments at y=300 in �b� have a higher strain value than larger
fragments, implying that cracks inside smaller fragments are likely
to happen somewhat sooner than possible further fragmentation of
the bigger fragments in �b�.
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themselves parallel to the x=100 line. In this case, the
amount of energy each branch receives is just the bare mini-
mum needed for crack propagation. In Fig. 2�a�, the width of
the strip is chosen to be sufficiently wide to store enough
elastic energy to support more than two branches, but not
wide enough to accommodate four vertical branches. Note
the divergence of the four branches at 600�y�900 until the
lack of energy flow towards the outside branches causes a
slowing down of these branches. The outside branches then
get overtaken by the inside ones, lose their energy supply,
and eventually stop growing.

An increase of energy flow towards the two surviving
branches at 1000�y�1500 leads to a number of attempted
bifurcations in this region. Note that in the region of 1000
�y�1500, the two branches keep separating from each
other and the character of the crack roughness changes as
more of the energy supply from the strip center �i.e., directed
outwards from the center line x=100� becomes available for
the crack. The crack roughness develops predominantly on

the outside of the branches at y=1000, but as the energy flow
towards the branches from the left becomes comparable to
that from the right, roughness appears on both sides of the
branches in the region of 1300�y�1500 of Fig. 2�a�. In the
region of 600�y�900, the small distance between the
cracks limits the amount of stored energy per crack, and only
smooth surfaces appear.

The process of crack growth in Fig. 2 undergoes oscilla-
tion between one pair of rough cracks that tend to expand
outward until successfully branching into two pairs, and two
pairs of cracks competing for available elastic energy that
eventually leads to one winning pair, which develop rough-
ness as soon as the other pair is abandoned.

It was noted previously �12� that crack evolution does not
necessarily stop at the moment when the crack arrives at the
bottom of a plate, where the material is split into two or more
pieces and the external forces applied at vertical boundaries
are no longer the primary source of crack growth. Below, we
describe in more detail the crack evolution that might be
classified as a different phase of crack growth. As we noted,
the limited amount of stored energy in the strip prevents
cracks in Fig. 2 from undergoing large scale structural recon-
struction, but, as we describe below, it is possible to see in
which direction this reconstruction will go.

We find that parts of the strips with different roughness
�or different fractal dimension�, marked as R1 and R2 in Figs.
2 and 3, will evolve differently. The regions with rough
cracks of higher fractal dimension of 1.35 evolve much faster
than those with a fractal dimension of smaller value, below
1.25. The former cracks produce small closed loops; the cre-
ation of these closed loops is facilitated by the rough nature
of the crack. The fragments that are disconnected from the
main plate might undergo further rapid fragmentation, pro-
ducing debris. Such debris can be found at y=200 and 1200
in Fig. 2�a� and at y=600 in Fig. 2�b�. We point out that the
shattering stage here occurs soon after fragment formation.
For example, fragments at y=1200 in Fig. 2�a� get shattered
before the branches of the main crack �whose propagation is
assisted by external forces� arrive at the bottom of the plate.

Fragmentation of parts associated with the smooth crack
happens in a different fashion. It takes more time to produce
these fragments and the size of the fragments is generally
much larger than the ones in the R1 region. After a fragment
is formed, it might survive without further fragmentation for
a considerably longer time than fragments in R1. We note
that the size of the fragments appears to be related to a sur-
viving time �time from fragment formation until further frag-
mentation�. We can see two pairs of relatively large sized
fragments at y=500 and 1000 in Fig. 2�b� without signs of
further fragmentation or debris formation, and we expect the
possible formation of one pair of even larger sized fragments
that are still connected to the main plate at 600�y�900 in
Fig. 2�a� and the pair of medium fragments y=300 in Fig.
2�b�. It appears that these medium sized fragments are going
to undergo some transformation �further fracture� if the
simulations were continued. This is inferred from the higher
strain fields inside the fragments, as shown by the darker
color in Fig. 2�b�. Thus the medium sized fragments appear
to evolve much slower than the small fragments and slightly
faster than the large ones.
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FIG. 3. �a� and �b� Local fractal dimension �D� of cracks �in
Figs. 2�a� and 2�b�� exhibits alternating character along the crack
path �i.e., y direction�. �c� Fractal dimension obtained by a box
counting method as the slope of the graph of ln�N�h�� vs ln�1/h�,
with the size of a box h changing from 1 to 20. The plots in �c� are
for two points in �b�: y=250 and 350. Measurements are taken from
16 squares of 100	100 nodes along the crack path at times imme-
diately following the propagation of the main crack through indi-
vidual squares. Undulations of the fractal dimension in R1 and R2

areas ��a� and �b�� are mostly due to the partitioning of the crack
path into 100	100 squares, so that some of the squares contain
both smooth and rough cracks �see, for example, parts 200�y
�300 and 300�y�400 in Fig. 2�b��.
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B. Fracture pattern formation

We see that fracture in the strip leads to the formation of
regions with different fractal dimension. We find parts with
fewer branches of higher roughness and fractal dimension
and parts with more cracks with smoother surface and
smaller fractal dimension. With time, patches of higher frac-
tal dimension exhibit a tendency to evolve faster into a state
with even higher fractal dimension, e.g., a value of 1.82 in
the vicinity of the shattered loop at y=200 in Fig. 2�a�. Parts
with smooth cracks can evolve into a state with large frag-
ments that are more stable against further fragmentation and
shattering. These tendencies are ultimately responsible for
the formation of two different scaling laws for the fragmen-
tation process elucidated below.

In Fig. 4 we present a larger sample of 2000	2000
nodes, where we show the time evolution of a crack during a
time 5.3t0. Time t0 is defined as the time it takes to form a
treelike structure that reaches the bottom of the plate and so
splits the plate. The material is the same as the one in Fig.
2�b�, with a Poisson’s ratio of �=1/5. Due to the fact that we

preserve mirrorlike symmetry with respect to the line x
=aNx /2, the left and right parts of a crack can be considered
interchangeably. The time evolution of a crack in Fig. 4 is
given as four half-plates of a single fractured plate, where
each half-plate corresponds to a given time tn. The structural
evolution of the crack is more complex than in Fig. 2. Frag-
ments are often comprised of unequal numbers of rough and
smooth sides. So subsequent fragmentation can start at the
rough sides of a fragment, produce both rough and smoother
new surfaces, and stimulate different evolution trends within
the newly formed fragments. Also the “elastic ejection” of a
fragment �15� can produce additional strain on the material
due to the angular rotation of a fragment. We note that Fig. 4
is designed to show the development of a crack, so that the
crack path is easily observable. In Fig. 4, the fractured plate
is shown in a Lagrangian �material� system of coordinates
where the spatial coordinate of each material point is kept
constant as the material deforms or moves.

The fractal dimension of the sample varies significantly
with both time and location, from one part of the plate in Fig.
4 to another. The fractal dimension ranges from 1.20 in t1 in
Fig. 4 to 1.82 in later stages of crack growth. It can be seen
from Fig. 4 that the fragmentation process develops prima-
rily in places of higher local fractal dimension �crack rough-
ness�, as along the “stem of a tree” seen in the t1 and t2
frames in Fig. 4. It is also visible in Fig. 4 that crack evolu-
tion, like further fragmentation and shattering, is faster in
smaller fragments.

We find that the two fragmentation trends discussed ear-
lier with respect to Fig. 2 ultimately lead to two scaling laws
for the fragment size distribution. In Fig. 5, we document the
robustness of these power laws by plotting the fragment size
distribution for earlier and later times of crack growth. We
find that the cumulative number of fragments N that are
larger than a given area s, N�
s�, obey a power law distri-
bution N�
s��s−�. The value of the exponent for small
fragments is ��0.8. In this case, the behavior of the system
is governed by fragment formation, as in the region of rough
cracks, with a higher fractal dimension of 1.35 �as discussed
above�. For larger fragments �area larger than critical value
s* in Fig. 5� formed by smoother cracks �with a fractal di-
mension that might approach that of a straight line�, the
value of the exponent is ��0.3. The parameter s* is deter-
mined as the crossover between the best fits for the corre-
sponding larger and smaller fragments. We note that the
value of the measured exponents depends on how one treats
the crossovers between the different regions in Fig. 5 �the
crossover at s* and the cutoff at large s�. The sharp cross-
overs yield the values quoted above. A difference of up to
10% can be measured for a smoother transition at the critical
point s* and at the cutoff at large s due to the characteristic
“wave” of measured values �dots in Fig. 5� along the fitted
exponents �lines in Fig. 5�.

With time, as the number of fragments keeps increasing
and a larger area of the plate undergoes a transition to the
shattered stage, the size distribution still conforms to the
above laws, with the critical value s* increasing with time.
The part of the size distributions with an exponent of 0.8
envelops more fragments with time and includes those of a
larger size �see Fig. 5�. At each given time t, the critical
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FIG. 4. Snapshots of four half-plates representing the time evo-
lution of a fractured plate as time progresses from t1 to t4. Shattered
areas appear almost black due to the high concentration of cracks. A
darker color indicates a higher strain value. Black lines are the
cracks.
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value s* is associated with a certain length scale of a frac-
tured plate st. Length scales of a plate form a set Sn discussed
later in Fig. 6 and shown for comparison in Fig. 5.

We are now in a position to address the question of why
there are two distinctive scaling exponents � observed in our
stimulations. We found that these exponents are associated
with different regions of the fractured plate. Using the con-
cept of critical size s*, it is possible to pinpoint the location
of these regions denoted as Q1 and Q2 in Fig. 6. The frag-
ments formed in the Q1 and Q2 regions shown in Fig. 6 are
mainly contributing to the respective parts of the size distri-
butions in Fig. 5, which are also denoted as Q1 and Q2. We
note that the shape of fragments in the Q2 region is mostly
that of a rectangle with a low aspect ratio. This is in contrast
to the highly elongated shape of some fragments in Q1.

The Q1 region is principally associated with a region
where the fracture process is driven by the preexisting strain
�see Fig. 6�. The further evolution of this region in terms of
fragment formation is determined by the fractal dimension of
the primal crack in Q1. This crack “carves out” future frag-
ments, so that up to roughly 75% of a fragment perimeter is
determined at the initial stage. This is shown in Fig. 6�b�,
where the set of characteristic length scales Sn determines the

typical size of the fragments, with small fragments usually
being formed first. As we noted above and in Fig. 5, the part
of the size distribution with the exponent of ��0.8 enve-
lopes fragments characterized by the same set of length
scales Sn, with the critical value s* moving from smaller
sizes of Sn towards s0, which is the maximum possible value
of a set.

The fracture of the secondary region Q2 is driven mostly
by redistribution of energy in the form of emitted �mostly in
Q1� elastic waves. Cracks in Q2 have a lower fractal dimen-
sion and are characterized by another set of length scales,
with all length scales being larger than s0 �compare Figs.
6�b� and 6�c��. The finite size of a plate limits the amount of
initially stored energy in our simulation �and thus the number
of fragments formed in the Q2 region of Fig. 6� and leads to
the formation of a two-mode power law distribution in frag-
ment sizes. Nevertheless, the redistribution of energy in the
form of elastic waves can lead to the establishment of new
tree “stems” �small regions Q1 in Fig. 6�a�, to the right� that
reduce the Q2 region even further, leading to the shrinking of
the region governed by the ��0.3 exponent in Fig. 5. One
would expect that if more than one crack is initiated and/or
sustained by an applied strain, the Q2 region might disappear
altogether �and correspondingly, the region governed by ex-
ponent ��0.3 in Fig. 5�.

We can compare our description of composite power laws
in fragment formation in mode I fracture found here with
experiments on fragmentation by impact. The main differ-
ence in the nature of these two types of fragmentation lies in
the supply of energy that primarily sustains crack growth
�potential energy associated with applied strain here and ki-
netic energy brought by impact�. The composite power laws
associated with small and large fragments were indeed seen
in the experiments on low velocity impact �16�, whereas only
the power law for small fragments was observed in experi-
ments on high velocity impact �6,17�. This disappearance of
the power law for larger fragments with an increase in the
energy supply �and so an increase of the role of the region
associated with primary crack growth, Q1 here� is associated
with the disappearance of the secondary �Q2 here� region of
crack growth. In our simulation, we demonstrate the trend of
the Q2 region to shrink with time.

We note that our exponent of ��0.3 lies very close to the
experimentally measured exponent of ��0.35 �18� obtained
in experiments on the fragmentation of thin shells by impact
and by explosion. It was suggested that such a relatively
small value of the exponent can indicate a cleavage mecha-
nism of fragmentation, which is significantly different �19�
from the experimental and theoretical results on fragmenta-
tion of two-dimensional bulk systems where 0.5���1
were found �see Ref. �19� and references therein�. The theo-
retical prediction of the branching-merging process of cracks
�20� governed by the existence of defects in the sample gives
the lowest exponent in that range, i.e., ��0.5. In contrast to
a defect-governed process, our model is based on the branch-
ing instabilities of cracks propagating in a sample that con-
tains no defects. It was noted that small fragments produced
due to such branching instabilities might have a significant
effect on the fragment size distribution �21�. Our exponent of
��0.3 �obtained in the process of branching and merging of
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FIG. 5. Fragment size distribution at an earlier time t=3t0 in �a�
and at the later t=4t0 �b�, measured for the sample in Fig. 6. Frag-
ment size s �in percent of total area of a sample� increasing from
left to right. N shows the number of existing fragments with area
higher than s. Small sized fragments �to the left of s*� obey a dif-
ferent scaling law than larger fragments �to the right of s*�. Perti-
nent to Q1 set Sn is the same as in Fig. 6.
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deterministic cracks in defect-free samples� might account
for the most basic mechanism producing such a low expo-
nent, which was experimentally observed in the fragmenta-
tion of thin shells. In addition to the similarity in exponents
�close to 1/3�, there is a noticeable qualitative similarity in
the treelike patterns in our work �see Fig. 6� and the treelike
patterns in the experiments on the fragmentation of these thin
shells �see Fig. 1 in Ref. �5��.

We find that the same scaling laws discussed above for
the sample with �=1/5 in Fig. 4, and with �=1/3 in Figs. 5
and 6 holds for a wide range of Poisson’s ratios with the
exception of very small ���0.1� and possibly large ��

0.33� values. In the range ��0.1, only one scaling expo-
nent was observed. Unlike the time-independent nature of
the scaling exponent for the range 0.1���0.33, the value
of exponent in the range 0���0.1 becomes a function of
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time. In particular, the scaling exponent gradually increases
with time, approaching the ��0.8 value. We also note that
formulation of the problem in Eq. �4� limits the investigation
to values of the Poisson’s ratio lying within the 0��
�0.33 range.

To facilitate future experimental studies, it is worth high-
lighting some issues that should be considered in comparing
our present findings �Figs. 2–6� with potential experimental
results. In particular, the model does not account for energy
dissipation due to processes such as acoustic emission and
generation of thermal energy. Inclusion of wave attenuation
usually leads to a slowing down of the crack velocity and has
a general stabilizing effect against crack branching and
growth �13,14�. For sufficiently large samples and fast frac-
ture, the emission of energy in the form of elastic waves is
expected to go faster than the dissipation of energy along the
crack path; thus the dispersion of elastic energy by elastic
waves might be sufficient to allow us to ignore the small
dissipation. In one of our simulations, we introduced the ab-
sorption of elastic waves �by introducing small dissipative
forces� along small strips at the boundaries at x=0 and x
=Nxa. We did not observe any significant decrease in shat-
tering in that particular study and expect the fragmentation
process to continue, at least until some critical small size
where attenuation of elastic waves might become important.

We also note that in our model, the fragments do not
interact with each other. After their formation, they are sub-
ject to rotation, additional stress associated with angular mo-
tion, and further fracture. In physical experiments, a plate
can remain in one piece even if it contains several cracks due
to the roughness of crack surfaces and interlocking of the
fragments. Such fractured plates can behave almost as if un-
damaged, at least with respect to compressive deformations.
This has a stabilizing effect against the shattering process.

We expect that even though such a stabilizing effect might
restrict the area of debris formation, the shattering process is
still governed by the initial roughness of the cracks, with two
types of cracks �rough and smooth� evolving into the forma-
tion of, respectively, smaller and larger fragments.

IV. CONCLUSIONS

We used a model of mode I fracture in brittle materials to
elucidate the relationship between parameters used to char-
acterize the fracture process, such as crack roughness, fractal
dimension, and fragment size distributions. We showed that
differences in the local crack morphology �different rough-
ness in local regions of the crack path� are connected to the
subsequent crack evolution �further development of the frag-
mentation� and elucidated different pathways for the evolu-
tion of an initially fractured surface. We showed that local
differences in the crack morphology lead to the formation of
two robust power laws for the distribution of formed frag-
ments, one being pertinent to smaller fragments and one to
larger fragments. Tracing the evolution of mode I fracture in
surfaces allows us to connect the most commonly measured
crack characteristics used in different types of fracture, such
as crack roughness, fractal dimension, and fragment size dis-
tribution. Based on our analysis, we suggest an explanation
for the experimental observations of one- and two-mode
power law distributions for fragments in the respective cases
of fragmentation by high and low velocity impact.
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